Демонстрационный вариант билета по курсу «Геометрия и топология» (3 курс, «Математическое обеспечение и администрирование информационных систем»)

	Вопрос	Вариант ответа	
2	Уравнение прямой, проходящей через точку $A(-4;-1)$, перпендикулярной прямой $1_1:2x-y+3=0$ имеет вид Уравнение плоскости, проходящей через точку $M(2; 3; 1)$, перпендикулярно прямой $\begin{cases} 2x-2y+z-11=0 \\ y+z-3=0 \end{cases}$ имеет вид	1) $x-2y+2=0$ 2) $x+2y+6=0$ 3) $2x-y+7=0$ 4) $-4x-y-17=0$ 1) $2x-2y+z+1=0$ 2) $7z+2y+z-21=0$ 3) $3x+2y-2z-10=0$ 4) $3x-2y+2z-2=0$	
3	Установите соответствие между парами векторов \vec{a} и \vec{b} и значениями m , при которых они коллинеарны. 1. $\vec{a}=2\vec{i}+\vec{j}-\vec{k}$, $\vec{b}=(8;4;5m)$ 2. $\vec{a}=(3m;-4;12)$, $\vec{b}=2\vec{i}+\vec{j}-3\vec{k}$ 3. $\vec{a}=(2;4m;8)$, $\vec{b}=(-1;2;-4)$	1) $m = -\frac{4}{5}$ 2) $m = \frac{4}{5}$ 3) $m = \frac{8}{3}$ 4) $m = -1$ 5) $m = -\frac{8}{3}$	
4	Уравнение второго порядка $4x^2 - 5y^2 + z^2 + 1 = 0$ задает в пространстве	 Гиперболический параболоид Однополостный гиперболоид Двуполостный гиперболоид Конус Эллипсоид 	
5	Соприкасающаяся плоскость. Определение. Написать уравнение соприкасающейся плоскости кривой $\bar{r}(t) = (a\cos t, b\sin t, e^t)$ в точке $t=0$.		
6	Определение топологического пространства. Дано множество $X = \{a,b,c\}$). Какие из наборов Ω_i являются топологическими структурами(топологиями): $\Omega_1 = \{X,\Theta,\{a\},\{b\},\{a,b\},\{a,c\}\}\}\Omega_2 = \{X,\Theta,\{a,b\},\{a,c\}\}\Omega_3 = \{X,\Theta,\{a\},\{a,c\},\{c\}\}\}$? Какие множества являются замкнутыми в найденных топологиях?		
7.	Доказать, что смешанное произведение векторов, образующих правую тройку, равно объёму параллелепипеда, построенного на этих векторах.		
8	В Формулы Френе. Третью формулу доказать.		

Примечание:

«удовлетворительно» - 4 задания «хорошо» -5,6 заданий «отлично» - 7, 8 заданий.