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Abstract. Probability distributions of money, income, and energy consumption

per capita are studied for ensembles of economic agents. The principle of entropy

maximization for partitioning of a limited resource gives exponential distributions

for the investigated variables. A non-equilibrium difference of money temperatures

between different systems generates net fluxes of money and population. To describe

income distribution, a stochastic process with additive and multiplicative components

is introduced. The resultant distribution interpolates between exponential at the low

end and power law at the high end, in agreement with the empirical data for USA.

We show that the increase of income inequality in USA originates primarily from the

increase of the income fraction going to the upper tail, which now exceeds 20% of the

total income. Analyzing the data from the World Resources Institute, we find that the

distribution of energy consumption per capita around the world can be approximately

described by the exponential function. Comparing the data for 1990, 2000, and 2005,

we discuss the effect of globalization on the inequality of energy consumption.
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1. Introduction

Two types of approaches are utilized in sciences to describe the natural world around us.

One approach is suitable for systems with a small number of degrees of freedom, such

as a harmonic oscillator, a pair of gravitating bodies, and a hydrogen atom. In these

cases, the goal is to formulate and solve dynamical equations of motion of the system,

be it within Newtonian, relativistic, or quantum mechanics. This approach is widely

used beyond physics to study dynamical systems in chemistry, biology, economics, etc.

In the opposite limiting case, we deal with systems consisting of a very large number of

degrees of freedom. In such cases, statistical description is employed, and the systems are

characterized by probability distributions. In principle, it should be possible to derive

statistical description from microscopic dynamics, but it is rarely feasible in practice.

Thus, it is common to use general principles of the theory of probabilities to describe

statistical systems, rather than to derive their properties from microscopic equations of

motion. Statistical systems are common in physics, chemistry, biology, economics, etc.

Any probability distribution can be thought of as representing some sort of

“inequality” among the constituent objects of the system, in the sense that the objects

have different values of a given variable. Thus, a study of probability distributions is

also a study of inequality developing in a system for statistical reasons. To be specific,

let us consider an economic system with a large number of interacting agents. In the

unrealistic case where all agents have exactly the same values of economic variables,

the system can be treated as a single agent called the “representative agent.” This

approach is common in traditional economics, but, by construction, it precludes a study

of inequality among the agents. However, social and economic inequality is ubiquitous

in the real world, and its characterization and understanding is a very important issue.

In this paper, we apply the well-developed methods of statistical physics to

economics and society in order to gain insights into probability distributions and

inequality in these systems. We consider three specific cases: the distributions of money,

income, and global energy consumption. In all three cases, the common theme is entropy

maximization for partitioning of a limited resource among multiple agents. Despite

the difference in the nature of the considered variables, we find a common pattern of

inequality in these cases. This approach can be also useful for studying other statistical

systems beyond the three specific cases considered in this paper.

Applications of these ideas to money and income have been published in literature

before: see review [1]. To introduce these ideas and to make the paper self-contained, we

briefly review the applications to money and income in section 2 and section 3. Section 3

also shows the latest available data for income distribution in 2007, not published before.

In section 4, we present a quantitative study of the probability distribution of energy

consumption per capita around the world. This is a new study, which, to the best of

our knowledge, has not appeared in the literature before.
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2. Statistical mechanics and thermodynamics of money

2.1. Entropy maximization for division of a limited resource

Let us consider a general mathematical problem of partitioning (dividing) a limited

resource among a large number of agents. Solution to this problem is similar to the

derivation of the Boltzmann-Gibbs distribution of energy in physics [2]. To be specific,

let us apply it to the probability distribution of money in a closed economic system.

Following [3], let us consider a system consisting of N economic agents. At any

moment of time, each agent i has a money balance mi. Agents make pairwise economic

transactions with each other. As a result of a transaction, the money ∆m is transferred

from an agent i to an agent j, so their money balances change as follows

mi → m′

i = mi −∆m,

mj → m′

j = mj +∆m. (1)

The total money of the two agents before and after transaction remains the same

mi +mj = m′

i +m′

j , (2)

i.e., there is a local conservation law for money. It is implied that the agent j delivers

some goods or services to the agent i in exchange for the money payment ∆m. However,

we do not keep track of what is delivered and only keep track of money balances. Goods,

such as food, can be produced and consumed, so they are not conserved.

The rule (1) for the transfer of money is analogous to the transfer of energy from one

molecule to another in molecular collisions in a gas, and (2) is analogous to conservation

of energy in such collisions. It is important to recognize that ordinary economic agents

cannot “manufacture” money (even though they can produce and consume goods). The

agents can only receive money from and give it to other economic agents. In a closed

system, the local conservation law (2) implies the global conservation law for the total

money M =
∑

i mi in the system. In the real economy, M may change due to money

emission by the central government or central bank, but we will not consider these

processes here. Another possible complication is debt, which may be considered as

negative money. Here we consider a model where debt is not permitted, so all money

balances are non-negative mi ≥ 0.

After many transactions between different agents, we expect that a stationary

probability distribution of money would develop in the system. It can be characterized as

follows. Let us divide the money axis m into the intervals (bins) of a small width m∗ and

label them with an integer variable k. Let Nk be the number of agents with the money

balances between mk and mk + m∗.‡ Then, the probability to have a money balance

in this interval is P (mk) = Nk/N . We would like to find the stationary probability

distribution of money P (m), which is achieved in statistical equilibrium.

‡ Throughout the paper, we use the indices k and n to label the money bins mk and the indices i and

j to label the individual money balances mi of the agents.
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Because the total money M in the system is conserved, the problem reduces to

partitioning (division) of the limited resource M among N agents. One possibility is an

equal division, where each agents gets the same shareM/N of the total money. However,

such an equal partition would be extremely improbable. It is more reasonable to obtain

the probability distribution of money from the principle of entropy maximization. Let us

consider a certain set of occupation numbers Nk of the money bins mk. The multiplicity

Ω is the number of different realizations of this configuration, i.e., the number of different

placements of the agents into the bins preserving the same set of occupation numbers

Nk. It is given by the combinatorial formula in terms of the factorials§

Ω =
N !

N1!N2!N3! . . .
. (3)

The logarithm of multiplicity is called the entropy S = lnΩ. In the limit of large

numbers, we can use the Stirling approximation for the factorials

S = N lnN −
∑

k

Nk lnNk = −
∑

k

Nk ln
(

Nk

N

)

. (4)

In statistical equilibrium, the entropy S is maximized with respect to the numbers

Nk under the constraints that the total number of agents N =
∑

k Nk and the total

money M =
∑

k mkNk are fixed. To solve this problem, we introduce the Lagrange

multipliers α and β and construct the modified entropy

S̃ = S + α
∑

k

Nk − β
∑

k

mkNk. (5)

Maximization of entropy is achieved by setting the derivatives ∂S̃/∂Nk to zero for each

Nk. Substituting (4) into (5) and taking the derivatives‖, we find that the equilibrium

probability distribution of money P (m) is an exponential function of m

P (mk) =
Nk

N
= eα−βmk = e−(mk−µ)/T . (6)

Here the parameters T = 1/β and µ = α/T are the analogs of temperature and chemical

potential for money. Their values are determined by the constraints

1 =

∑

k Nk

N
=
∑

k

P (mk) =

∞
∫

0

dm

m∗

e−(m−µ)/T ⇒ µ = −T ln
(

T

m∗

)

, (7)

〈m〉 =
M

N
=

∑

k mkNk

N
=
∑

k

mkP (mk) =

∞
∫

0

dm

m∗

me−(m−µ)/T = T. (8)

We see that the money temperature T = 〈m〉 (8) is nothing but the average amount of

money per agent. The chemical potential µ (7) is a decreasing function of T .

Equation (6) shows quite generally that division of a conserved limited resource

using the principle of entropy maximization results in the exponential probability

distribution of this resource among the agents. In physics, the “limited resource” is the

§ Notice that human agents, unlike particles in quantum physics, are distinguishable.
‖ Notice that N =

∑

k
Nk in (4) should be also differentiated with respect to Nk.
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energy E divided among N molecules of a gas, and the result is the Boltzmann-Gibbs

distribution of energy [2]. The exponential distribution of money (6) was proposed in

[3], albeit without explicit discussion of the chemical potential, as well as in [4]. Various

models for kinetic exchange of money are reviewed in [1] and in the popular article

[5]. The applicability of the underlying assumptions of money conservation and random

exchange of money is discussed in [1] and [6]. The analogy between energy and money

is mentioned in some physics textbooks [7], but not developed in detail.

2.2. Flow of money and people between two countries with different temperatures

To illustrate some consequences of the statistical mechanics of money, let us consider

two systems with different money temperatures T1 > T2. These can be two countries

with different average amounts of money per capita: the “rich” country with T1 and

the “poor” with T2.¶ Suppose a limited flow of money and agents is permitted between

the two systems. Given that the variation δS̃ vanishes due to maximization under

constraints, we conclude from (5) that

δS = β δM − α δN ⇔ δM = T δS + µ δN. (9)

If δM and δN denote the flow of money and agents from system 1 to system 2, then

the change of the total entropy of the two systems is

δS = (β2 − β1) δM − (α2 − α1) δN =
(

1

T2

−
1

T1

)

δM + ln
(

T2

T1

)

δN. (10)

According to the second law of thermodynamics, the total entropy should be increasing,

so δS ≥ 0. Then, the first term in (10) shows that money should be flowing from the

high-temperature system (rich country) to the low-temperature system (poor country).

This is called the trade deficit – a systematic net flow of money from one country to

another, which is best exemplified by the trade between USA and China. The second

term in (10) shows that the agents would be flowing from high to low chemical potential,

which corresponds to immigration from a poor to a rich country. Both trade deficit and

immigration are widespread global phenomena. The direction of these processes can

be also understood from (8). The two systems are trying to equilibrate their money

temperatures T = M/N , which can be achieved either by changing the numerators due

to money flow, or the denominators due to people flow.

2.3. Thermodynamics of money and wealth

Thermal physics has two counterparts: statistical mechanics and thermodynamics.

Statistical mechanics of money was outlined in section 2.1. Is it possible to construct

an analog of thermodynamics for money? Many attempts were made in literature, but

none was completely successful: see reviews [5] and [8].

¶ For simplicity, let us assume that the two countries use the same currency, or the currency exchange

rate is fixed, so that an equivalent currency can be used.
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One of the important concepts in thermodynamics is the distinction between heat

and work. In statistical physics, this distinction can be microscopically interpreted as

follows [2]. The internal energy of the system is U =
∑

k εkNk, where εk is an energy level,

and Nk is the occupation number of this level. Suppose the energy levels εk(λ) depend

on some external parameters λ, such as the volume of a box in quantum mechanics,

an external magnetic field acting on spins, etc. Then, the variation of U contains two

terms δU =
∑

k(δεk)Nk +
∑

k εk(δNk) = δW + δQ. The first term has mechanical origin

and comes from the variation δεk = (∂εk/∂λ) δλ of the energy levels due to changes of

the external parameters λ. This term is interpreted as the work δW done on the system

externally. The second term has statistical origin and comes from the changes δNk in

the occupation numbers of the energy levels. This term is interpreted as the heat δQ.

An analog of this construction does not seem to exist for money M =
∑

k mkNk. A

variation δM =
∑

k mk(δNk) is possible due to changes in the occupation numbers, but

there is no analog of the variation δmk of the “money levels” due to changes in some

external parameters. Thus, we can only define the heat term, but not the work term in

the money variation. Indeed, (9) is the analog of the first law of thermodynamics for

money, but there is no term corresponding to work in this equation.

Nevertheless, statistical mechanics of money can be extended to a form somewhat

resembling conventional thermodynamics, if we take into account the material property

of the agents. Let us define the wealth wi of an agent i as a sum of two terms. One

term represents the money balance mi, and another term the material property, such as

a house, a car, stocks, etc. For simplicity, let us consider only one type of property, so

that the agent has vi physical units of this property. In order to determine the monetary

value of this property, we need to know the price P per unit. Then, the wealth of the

agent is wi = mi + Pvi. Correspondingly, the total wealth W in the system is+

W = M + PV, (11)

where V =
∑

i vi is the total “volume” of the property in the system. If money M is

analogous to the internal energy U in statistical physics, then wealth W is analogous

to the enthalpy H . The wealth W includes not only the money M , but also the money

equivalent necessary to acquire the volume V of property at the price P per unit.

Let us consider the differential of wealth

dW = dM + P dV + V dP = V dP. (12)

Here the first two terms cancel out, and only the last term remains. Indeed, when the

volume dV > 0 of property is acquired, the money dM = −P dV < 0 is paid for the

property, i.e., money is exchanged for property. Equation (12) is also valid at the level

of individual agents, dwi = vi dP . These equations show that wealth changes only when

the price P changes.

To advance the analogy with thermodynamics, let us consider a closed cycle in the

(V, P ) plane illustrated in figure 1. This cycle can be interpreted as a model of stock

+ From now on, we use the letter W to denote wealth, not work.
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Figure 1. A closed cycle of speculation or trading. V and P represents the volume

and price of goods.

market speculation, in which case V is the volume of stock held by a speculator. Starting

from the lower left corner, the speculator purchases the stock at the low price P2 and

increases the owned volume from V1 to V2. Then, the price increases from P2 to P1. At

this point, the speculator sells the stock at the high price P1, reducing the owned volume

from V2 to V1. Then, the price of the stock drops to the level P2, and the cycle can be

repeated. From (12), we find that the wealth change of the speculator is ∆W =
∮

V dP ,

which is the area (P1 − P2)(V2 − V1) enclosed by the cycle in figure 1. From (11), we

also find that ∆W = ∆M , because P and V return to the initial values at the end of

the cycle. Thus, the monetary profit ∆M is given by the area enclosed by the cycle.

This money is extracted by the speculator from the other players in the market, so the

conservation law of money is not violated. In the ideal economic equilibrium, there

should be no price changes allowing one to make systematic profits, which is known as

the “no-arbitrage theorem”. However, in the real market, significant rises and falls of

stock prices do happen, especially during speculative bubbles.

The cycle in figure 1 also illustrates the trade between China and USA. Suppose a

trade company pays money M2 to buy the volume V2−V1 of the products manufactured

in China at the low price P2. After shipping across Pacific Ocean, the products are

sold in USA at the high price P1, and the company receives money M1. Empty ships

return to China, and the cycle repeats. As shown in [3], the price level P is generally

proportional to the money temperature T . Thus, the profit rate in this cycle is

profit rate =
M1 −M2

M2
=

P1 − P2

P2
=

T1 − T2

T2
. (13)

By analogy with physics, one can prove that (13) gives the highest possible profit rate

for the given temperatures T1 and T2. Indeed, from (9) with δN = 0, we find that

M1 = T1∆S1 and M2 = T2∆S2. Under the most ideal circumstances, the total entropy

of the whole system remains constant, so ∆S1 = ∆S2. Then, M1/M2 = T1/T2, and (13)

follows. Here we assumed that the profit money M1−M2 has low (ideally zero) entropy,

because this money is concentrated in the hands of just one agent or trading company

and is not dispersed among many agents of the systems.
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Thermal machines have cycles analogous to figure 1, and equation (13) is similar

to the Carnot formula for the highest possible efficiency [2, 7]. The China-USA trade

cycle resembles an internal combustion engine, where the purchase of goods from China

mimics fuel intake, and the sales of goods in USA mimics expulsion of exhaust. The

net result is that goods are manufactured in China and consumed in USA. The analogy

between trade cycles and thermal machines was highlighted by Mimkes [9, 10]. Although

somewhat similar to [10], our presentation emphasizes conceptual distinction between

money and wealth and explicitly connects statistical mechanics and thermodynamics.

Empirical data on the international trade network between different countries were

analyzed in several papers. Reference [11] analyzed trade imbalances, defined as the

difference between exports and imports from one country to another. The paper

classified countries as net consumers and net producers of goods. The typical examples

are USA and China, respectively, as illustrated in Figure 2 of [11] for 2000, in qualitative

agreement with our discussion above. In contrast, reference [12] studied trade volumes,

defined as the sum of exports and imports from one country to another. The paper

found that the trade volume s of a country is proportional to the gross domestic product

(GDP) of the country: s ∝ (GDP)γ with the exponent γ ≈ 1. It means that the trade

volume and GDP are extensive variables in the language of thermodynamics, so the

biggest volumes of trade are between the countries with the biggest GDPs. In thermal

equilibrium, money flows between two countries in both directions as payment for traded

goods, but money fluxes in the opposite directions are equal, so there is trade volume,

but no trade imbalance. Trade imbalance may develop when the two systems have

different values of intensive parameters, such as the money temperature. Then, the

direction of net money flow is determined by the sign of the temperature difference.

Of course, there may be other reasons and mechanisms for trade imbalance besides

the temperature difference. Normally, the flow of money from the high- to low-

temperature system should reduce the temperature difference and eventually bring the

systems to equilibrium. Indeed, in the global trade, many formerly low-temperature

countries have increased their temperatures as a result of such trade. However, the

situation with China is special, because the Chinese government redirects the flow of

dollars back to USA by buying treasury bills from the US government. As a result,

the temperature difference remains approximately constant and does not show signs

of equilibration. The net result is that China supplies vast amounts of products to

USA in exchange for debt obligations from the US government. The long-term global

consequences of this process remain to be seen.

2.4. The circuit of money and the circuit of goods

Section 2.3 illustrates that there are two circuits in a well-developed market economy

[10]. One is the circuit of money, which consists of money payments between the

agents for goods and services. As argued in section 2.1, money is conserved in these

transactions and, thus, can be modeled as flow of liquid, e.g., blood in the vascular
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system. (A hydraulic device, the MONIAC, was actually used by William Philips,

the inventor of the famous Philips curve, to illustrate money flow in the economy [5].)

The second circuit is the flow of goods and services between the agents. This circuit

involves manufacturing, distribution, and consumption. The goods and services are

inherently not conserved. They represent the material (physical) side of the economy

and, arguably, are the ultimate goal for well-being of a society. In contrast, money

represents the informational, virtual side of the economy, because money cannot be

physically consumed. Nevertheless, money does play a very important role in the

economy by enabling its efficient functioning and by guiding resource allocation in a

society.∗ The two circuits interact with each other when goods and services are traded

(exchanged) for money. However, money cannot be physically transformed into goods

and vice versa. To illustrate this point, we draw an analogy with fermions and bosons

in physics. While the “circuits” of fermions and bosons interact and transfer energy

between each other, it is not possible to convert a fermion into a boson and vice versa.

The important consequence of this consideration is that an increase of material

production in the circuit of goods and services does not have any direct effect on the

amount of money in the monetary circuit. The amount of money in the system depends

primarily on the monetary policy of the central bank or government, who have the

monopoly for issuing money. Technological progress in material production does not

produce any automatic increase of money in the system. Thus, the expectation of

continuous monetary growth, where the agents would be getting more and more money

as a result of technological progress, is false. It is not possible for all businesses to operate

with profit on average, i.e., to have the greater total amount of money at the end of

a cycle than at the beginning. The agents can get more money on average only if the

government decides to print money, i.e., to increase the money temperature T = M/N .♯

Thus, monetary growth of the economy is directly related to the deficit spending by the

central government. On the other hand, it is very well possible to have technological

progress and an increase in the physical standards of living without monetary growth.

The monetary and physical circuits of the economy interact with each other, but they

are separate circuits. Unfortunately, this distinction is often blurred in the econophysics

and economics literature [10], as well as in the public perception.

3. Two-class structure of income distribution

3.1. Introduction

Although the exponential probability distribution of money (6) was proposed 10 years

ago [3, 4], no direct statistical data on money distribution is available to verify this

conjecture. Normally, people do not report their money balances to statistical agencies.

Given that most people keep their money in banks, the distribution of balances on bank

∗ Here we consider the modern fiat money, declared to be money by the central bank or government.

We do not touch the origin of money in the early history as some kind of special goods.
♯ For discussion of the issues related to debt, see review [1].
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accounts can give a reasonable approximation for the probability distribution of money.

However, these data are privately held by banks and not available publicly.

On the other hand, a lot of statistical data is available on income distribution,

because people report income to the government tax agencies. To some extent, income

distribution can be also viewed as a problem of partitioning of a limited resource, in this

case of the total annual budget. Following section 2.1, we expect to find the exponential

distribution for income. Drăgulescu and Yakovenko [13] studied the data on income

distribution in USA from the Internal Revenue Service (IRS) and from the US Census

Bureau. They found that income distribution is indeed exponential for incomes below

120 k$ per year. However, in the subsequent papers [14, 15], they also found that

the upper tail of income distribution follows a power law, as was first pointed out by

Pareto [16]. So, the data analysis of income distribution in USA reveals coexistence of

two social classes. The lower class (about 97% of population) is characterized by the

exponential Boltzmann-Gibbs distribution, and the upper class (the top 3% percent of

the population) has the power-law Pareto distribution. Time evolution of the income

classes in 1983–2001 was studied by Silva and Yakovenko [17]. They found that the

exponential distribution in the lower class is very stable in time, whereas the power-law

distribution of the upper class is highly dynamical and volatile. They concluded that

the lower class is in thermal equilibrium, whereas the upper class is out of equilibrium.

Many other papers investigated income distributions in different countries: see

review [1] for references. The coexistence of two classes appears to be a universal

feature of income distribution. In this section, we present a unified description of the

two classes within a single mathematical model.

3.2. Income dynamics as a combination of additive and multiplicative stochastic

processes

The two-class structure of income distribution can be rationalized on the basis of a

kinetic approach. Suppose the income r of an agent behaves like a stochastic variable.

Let P (r, t) denote the probability distribution of r at time t. Let us consider a diffusion

model, where the income r changes by ∆r over a time period ∆t. Then, the temporal

evolution of P (r, t) is described by the Fokker-Planck equation [18]

∂P (r, t)

∂t
=

∂

∂r
[A(r)P (r, t)] +

∂2

∂r2
[B(r)P (r, t)] . (14)

The coefficients A(r) and B(r) are the drift and the diffusion terms, which are

determined by the first and second moments of the income changes ∆r per unit time

A(r) = −
〈∆r〉

∆t
, B(r) =

〈(∆r)2〉

2∆t
. (15)

The stationary solution Ps(r) of (14) satisfies ∂tPs = 0, thus we get

∂(BPs)

∂r
= −APs. (16)
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The general solution of (16) is

Ps(r) =
c

B(r)
exp

(

−
∫ r A(r′)

B(r′)
dr′
)

, (17)

where c is a normalization factor, such that
∫

∞

0 Ps(r) dr = 1.

In the lower class, the income comes from wages and salaries, so it is reasonable to

assume that income changes are independent of income itself, i.e., ∆r is independent of

r. This process is called the additive diffusion [17]. In this case, the coefficients in (14)

are some constants A0 and B0. Then (17) gives the exponential distribution

Ps(r) =
1

T
e−r/T , T =

B0

A0
. (18)

On the other hand, the upper-class income comes from bonuses, investments, and capital

gains, which are calculated in percentages. Therefore, for the upper class, it is reasonable

to expect that ∆r ∝ r, i.e., income changes are proportional to income itself. This is

known as the proportionality principle of Gibrat [19], and the process is called the

multiplicative diffusion [17]. In this case, A = ar and B = br2, and (17) gives a power-

law distribution

Ps(r) ∝
1

r1+α
, α = 1 +

a

b
. (19)

The multiplicative hypothesis for the upper class income was quantitatively verified in

[20] for Japan, where tax identification data is officially published for the top taxpayers.

The additive and multiplicative processes may coexist. For example, an employee

may receive a cost-of-living raise calculated in percentages (the multiplicative process)

and a merit raise calculated in dollars (the additive process). Assuming that these

processes are uncorrelated, we find that A = A0 + ar and B = B0 + br2 = b(r20 + r2),

where r20 = B0/b. Substituting these expressions into (17), we find

Ps(r) = c
e−(r0/T ) arctan(r/r0)

[1 + (r/r0)2]1+a/2b
. (20)

The distribution (20) interpolates between the exponential law for low r and the power

law for high r, because either the additive or the multiplicative process dominates in the

corresponding limit. A crossover between the two regimes takes place at r ∼ r0, where

the additive and multiplicative contributions to B are equal. The distribution (20) has

three parameters: the temperature T = A0/B0, the Pareto exponent α = 1 + a/b, and

the crossover income r0. It is a minimal model that captures the salient features of the

two-class income distribution. A formula similar to (20) was also derived by Fiaschi and

Marsili [21] for a microscopic economic model, which is effectively described by (14).

3.3. Comparison with the personal income data from IRS

In this section, we compare (20) with the annual income data from IRS for the years

1996–2007 [22]. Because IRS releases the data with a delay of a couple of years, 2007 is

the latest year for which the data in currently available. The IRS data is given for a set of

discrete income levels. Thus, it is more practical to construct the cumulative distribution
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Year T in k$ α r0 in k$ r∗ in k$ f in % G

1996 33 1.63 76 116 11.8 0.55

1997 35 1.57 79 120 13.8 0.56

1998 36 1.55 80 122 16.4 0.57

1999 38 1.54 83 124 16.8 0.58

2000 40 1.34 105 150 18.4 0.59

2001 41 1.46 99 152 14.4 0.56

2002 41 1.51 99 154 12.6 0.55

2003 41 1.48 101 156 13.7 0.56

2004 43 1.41 105 158 16.7 0.58

2005 44 1.36 108 159 19.5 0.59

2006 46 1.36 107 160 20.5 0.60

2007 48 1.34 113 166 21.5 0.60

Table 1. T , α, and r0 are the parameters in (20), obtained by fitting the annual

income data from IRS. r∗ is the income separating the upper and lower classes. f is

the fraction of income going to the upper class, given by (21). G is the Gini coefficient.

function (CDF), which is the integral C(r) =
∫

∞

r P (r′) dr′ of the probability density. For

the probability density (20), C(r) is not available in analytical form, therefore it has to

be calculated by integrating Ps(r) numerically. We use the theoretical CDF Ct(r) to fit

the empirical CDF Ce(r) calculated from the IRS data.

Determining the best values of the three fitting parameters in the theoretical CDF

is a computationally challenging task. Thus, we do it step by step. For each year, we

first determine the values of T and α by fitting the low-income part of Ce(r) with an

exponential function and the high-income part with a power law. Then, keeping these

two parameters fixed, we determine the best value of r0 by minimizing the mean-square

deviation Σn ln
2[Ct(rn)/Ce(rn)] between the theoretical and empirical functions, where

the sum is taken over all income levels rn for which empirical data are available.

Table 1 shows the values of the fit parameters obtained for different years. The

data points for the empirical CDF and their fits with the theoretical CDF are shown in

figure 2 in log-log scale versus the normalized annual income r/T . For clarity, the curves

are shifted vertically for successive years. Clearly, the theoretical curves agree well with

the empirical data, so the minimal model (20) indeed captures the salient features of

income distribution in USA.

In previous papers [15, 17], fits of the income distribution data were made only to

the exponential (18) and power-law (19) functions. The income r∗, where the two fits

intersect, can be considered as a boundary between the two classes. The values of r∗
are shown in table 1. We observe that the boundary r∗ between the upper and lower

classes is approximately 3.5 times greater than the temperature T . Given that the CDF

of the lower class is exponential, we find that the upper class population approximately

is exp(−r∗/T ) = exp(−3.5) = 3%, which indeed agrees with our observations.
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Figure 2. Cumulative distribution functions constructed from the IRS data (symbols)

and their fits with the theoretical distribution (20), shown in log-log scale versus the

normalized annual income r/T . Plots for different years are shifted vertically for clarity.

3.4. The fraction of income in the upper tail and speculative bubbles

Let us examine the power-law tail in more detail. Although the tail contains a small

fraction of population, it accounts for a significant fraction f of the total income in the

system. The upper-tail income fraction can be calculated as

f =
R−NeT

R
≈

R−NT

R
= 1−

T

〈r〉
. (21)

Here R is the total income, N is the total number of people, and 〈r〉 = R/N is the

average income for the whole system. In addition, Ne is the number of people in the

exponential part of the distribution, and T is the average income of these people. Since

the fraction of people in the upper tail is very small, we use the approximation Ne ≈ N

in deriving the formula (21) for f . The values of f deduced from the IRS data using

(21) are given in table 1.

Panel (c) in figure 3 shows historical evolution of 〈r〉, T , and f for the period 1983–

2007. We see that the average income T of the lower class increases steadily without any

large jumps. In contrast, the fraction f going to the upper class shows large variations
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Figure 3. (a) Gini coefficient G for the income distribution in USA in 1983–2007

(connected line) and the theoretical formula G = (1 + f)/2 (open circles). (b) The

exponent α of the power-law tail (19) for income distribution. (c) The average income

〈r〉 in the whole system, the average income T in the lower class (the temperature of

the exponential part), and the percentage of income f going to the upper tail.

and now exceeds 20% of the total income in the system. The maxima of f are achieved

at the peaks of speculative bubbles, first at the end of the “.com” bubble in 2000 and

then at the end of the subprime mortgage bubble in 2007. After the bubbles collapse,

the fraction f drops precipitously. We conclude that the upper tail is highly dynamical

and out of equilibrium. The tail swells considerably during the bubbles, whereas the

effect of the bubbles on the lower class is only moderate. As a result, income inequality

increases during bubbles and decreases when the bubbles collapse.

In the view of the argument about conservation of money presented in section 2.1,

what is the source of money for the enormous increase of the upper tail income during

speculative bubbles? The stock market bubble in the late 1990s was actually predicted

in the book [23] published in 1993. The prediction was based on the population data

showing that the demographic wave of aging baby boomers will be massively investing

their retirement money in the stock market in the second half of 1990s, which indeed

happened. The stock prices rose when millions of boomers paid for the stocks of “.com”

companies. When the demographic wave reached its peak around 2000 and the influx of

money to the stock market started to saturate (at its highest level), the market crashed
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precipitously, and the population was left with worthless stocks. One can see an analogy

with the cycle in figure 1. The net result of this bubble is the transfer of money from

the lower to the upper class under the cover of “retirement investment”.

As it is clear now, the second bubble in 2003–2007 was based on the enormous

growth of debt due to proliferation of subprime mortgages. As discussed in [3, 1], debt

can be considered as negative money, because debt liabilities are counted with negative

sign toward net worth of an individual. The conservation law (2) is still valid, but money

balances mi can take negative values. So, the first moment (the “center of mass”) of

the money distribution 〈m〉 = M/N remains constant. However, now some agents can

become super-rich with very high positive money balances at the expense of other agents

plunging deeply into debt with negative money balances. Thus, relaxing the boundary

condition m ≥ 0 undermines stability of the Boltzmann-Gibbs distribution (6). This

is what happened during the subprime mortgages bubble. The money flowing to the

upper tail were coming from the growth of the total debt in the system. Eventually,

the bubble collapsed when the debt reached a critical level. Now the bailout effort

by the government, effectively, represents the transfer of debt from economic agents

to the government. The overall result is that the income growth of the upper class in

2003–2007 was coming from the bailout money that the government is printing now.

As emphasized in section 2.1 and section 2.4, the government and central bank are the

ultimate sources of new money because of the government monopoly on fiat money.

The discussion and the data presented in this section indicate that, by combining

demographic data with the principle of money conservation, it may be possible to

predict, to some degree, the macroeconomic behavior of the economy. In fact, the

book [23] predicted in 1993 that “the next great depression will be from 2008 to 2023”

(page 16). This is a stunning prediction 15 years in advance of the actual event. For an

update, see the follow-up book [24].

3.5. The power-law exponent of the upper tail

Another parameter of the upper tail is the power-law exponent α in (19). Table 1 and

panel (b) in figure 3 show historical evolution of α from 1983 to 2007. We observe that

α has decreased from about 2 to about 1.3. The decrease of α means that the power-law

tail is getting “fatter”, i.e., the inequality of income distribution increases. It looks like

the system is approaching dangerously closely to the critical value α = 1, where the

total income in the tail
∫

∞

r∗ rP (r) dr would formally diverge [25]. On top of the gradual

decrease, α dived down and up sharply around 1987 and 2000. The dive-downs of α

represent sharp increases of income inequality due to the bubbles, followed by crashes

of the bubbles in 1987 and 2000 and subsequent contractions of the upper tail. Thus,

the behavior of the tail exponent α is qualitatively consistent with the behavior of the

tail fraction f discussed in section 3.4. A similar behavior was found for Japan [20],

where α jumped sharply from 1.8 to 2.1 between 1991 and 1992 due to the crash of the

Japanese market bubble.
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During the times of bubbles, the sharp decrease of α is clearly a dynamical process,

which cannot be described adequately by stationary equations. On the other hand,

during the time between bubbles, which economists may call “recession” or “depression”,

the market is quiet, and it may be possible to describe it using a stationary approach.

Even during these times, the power-law tail does not disappear, but the exponent α takes

a relatively high value. From the panel (b) in figure 3, it appears that the upper limit

for α is about 2. This limiting value is supported by other observations in literature.

Analysis of Japanese data [20] shows that α changes in the range between 1.8 to 2.2.

Drăgulescu and Yakovenko [14] found α = 1.9 for wealth distribution in UK for 1996.

Thus, we make a conjecture that α = 2 is a special value of the power-law exponent

corresponding to a quiet, stationary market.

In order to understand what is special about α = 2, let us examine the moments

of the income change ∆r. The first moment, 〈∆r〉 is always negative. This condition

ensures that A > 0 in (15), so that (16) has a stationary solution. The condition

〈∆r〉 < 0 indicates that, on average, everybody’s income is decreasing due to the drift

term, yet the whole income distribution remains stationary because of the diffusion

term. In stochastic calculus, the first 〈∆r〉 and the second 〈(∆r)2〉 moments are of the

same order in ∆t, so they must be treated on equal footing. Thus, instead of considering

the changes in r, let us discuss how r2 changes in time. Using (15), we find

〈∆(r2)〉 = 〈(r +∆r)2 − r2〉 = 2r〈∆r〉+ 〈(∆r)2〉 = 2(−rA +B)∆t. (22)

For the additive stochastic process (18), we find from (22) that 〈∆(r2)〉 > 0 for r < T

and 〈∆(r2)〉 < 0 for r > T . These conditions indicate a stabilizing tendency of the

income-squares to move in the direction of the average income T .

Now, let us apply (22) to the multiplicative process (19). In this case, we find

〈∆(r2)〉 = 2(−a+ b) r2∆t. (23)

For a = b, (23) gives 〈∆(r2)〉 = 0 for all r. This condition can be taken as a criterion

for the inherently stationary state of a power-law tail, because r2 does not change (on

average) for any r in a scale-free manner. From (19), we observe that the condition

a = b corresponds to the value α = 1 + a/b = 2, which is indeed the upper value of the

power-law exponent observed for stationary, quiet markets:

〈∆(r2)〉 = 0 ⇔ a = b ⇔ α = 2. (24)

On the other hand, for a < b, we find 〈∆(r2)〉 > 0 and α < 2. In this case, the income-

square increases on average, which correlates with the upper tail expansion during the

boom times. Notice that the value α = 2 in (24) is different from the value α = 1 found

for the models of random saving propensity and earthquakes in [5, 6, 26].

3.6. Lorenz plot and Gini coefficient for income inequality

The standard way of representing income distribution in economic literature is the

Lorenz plot [27]. It is defined parametrically in terms of the two coordinates x(r) and
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Figure 4. Lorenz plots for income distribution in 1996 and 2007. The data points are

from IRS, and the theoretical curves represent (26) with f from (21).

y(r) depending on a parameter r

x(r) =

r
∫

0

dr′P (r′), y(r) =

r
∫

0
dr′r′P (r′)

∞
∫

0
dr′r′P (r′)

. (25)

Here x(r) is the fraction of population with incomes below r, and y(r) is the total income

of this population, as a fraction of the total income in the system. When r changes from

0 to ∞, the variables x and y change from 0 to 1 producing the Lorenz plot in the (x, y)

plane. The advantage of the Lorenz plot is that it emphasizes the data where most of

the population is. In contrast, the log-linear and log-log plots, like figure 2, emphasize

the upper tail, which corresponds to a small fraction of population, and where the data

points are sparse. Another advantage of the Lorenz plot is that all available data is

represented within a finite area in the (x, y) plane, whereas, in other plots, the upper

end of the data at r → ∞ is inevitably truncated.

For the exponential distribution P (r) = exp(−r/T )/T , it was shown in [13] that

the Lorenz curve is given by the formula y = x + (1 − x) ln(1 − x). Notice that this

formula is independent of T . However, when the fat upper tail is present, this formula

is modified as follows [15, 17]

y = (1− f)[x+ (1− x) ln(1− x)] + fΘ(x− 1). (26)

Here Θ(x − 1) is the step function equal to 0 for x < 1 and 1 for x = 1. The jump at

x = 1 is due to the fact that the fraction of population in the upper tail is very small,

but their fraction f of the total income is substantial.



18

The data points in figure 4 show the Lorenz plots calculated from the IRS data for

1996 and 2007. The solid lines in figure 4 are the theoretical Lorenz curves (26) with the

values of f obtained from (21). The theoretical curves agree well with the data. The

distance between the diagonal line and the Lorenz curve characterizes income inequality.

We observe in figure 4 that income inequality increased from 1995 to 2007, and this

increase came exclusively from the growth of the upper tail, which pushed down the

Lorenz curve for the exponential income distribution in the lower class.

The standard way of characterizing inequality in economic literature [27] is the Gini

coefficient 0 ≤ G ≤ 1 defined as twice the area between the diagonal line and the Lorenz

curve. It was shown that G = 1/2 for the exponential distribution [13], and

G =
1 + f

2
(27)

when taking into account the fraction f going to the upper class on top of the exponential

distribution [17]. The values of G deduced from the IRS data are given in table 1 and

shown in panel (a) of figure 3 by the connected line, along with (27) shown by open

circles. The increase of G indicates that income inequality has been rising since 1983.

The agreement between the empirical values of G and the formula (27) in figure 3

demonstrates that the increase in income inequality from the late 1990s comes from the

upper tail growth relative to the lower class.

4. Probability distribution of the global energy consumption

4.1. Introduction

In the preceding sections, we studied monetary aspects of the economy and discussed

probability distributions of money and income. We found that significant inequality

of money and income distributions can develop for statistical reasons. Now we would

like to discuss physical aspects of the economy. Since the beginning of the industrial

revolution several centuries ago, rapid technological development of the society has been

based on consumption of fossil fuel, such as coal, oil, and gas, accumulated in the Earth

for billions of years. The whole discipline of thermodynamics was developed in physics

to deal with this exploitation. Now it is becoming exceedingly clear that these resources

will be exhausted in not-too-distant future. Moreover, consumption of fossil fuel releases

CO2 to the atmosphere and affects global climate. These pressing global problems pose

great technological and social challenges.

As shown below, energy consumption per capita by human population around the

world has significant variation. This heterogeneity is a challenge and a complication

for reaching a global consensus on how to deal with the energy problems. Thus, it is

important to understand and quantitatively characterize the global inequality of energy

consumption. In this section, we present such a study using the approach developed in

the preceding sections of the paper.
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4.2. Energy consumption distribution as division of a limited resource

Let us consider an ensemble of economic agents and characterize each agent i by

the energy consumption εi per unit time. Notice that here εi denotes not energy,

but power, which is measured in kiloWatts (kW). Similarly to section 2.1, we can

discuss the probability distribution of energy consumption in the system and introduce

the probability density P (ε), such that P (ε) dε gives the probability to have energy

consumption in the interval from ε to ε+dε. Energy production, based on extraction of

fossil fuel from the Earth, is physically limited. So, energy production per unit time is

a limited resource, which is divided for consumption among the global population. As

argued in section 2.1, it would be very improbable to divide this resource equally. More

likely, this resource would be divided according to the entropy maximization principle.

Following the same procedure as in section 2.1, with money m replaced by energy

consumption ε, we arrive to the conclusion that the probability distribution of ε should

follow the exponential law analogous to (6)

P (ε) ∝ e−ε/T , T = 〈ε〉. (28)

Here the “temperature” T is the average energy consumption per capita.††

Now we would like to compare the theoretical conjecture (28) with the empirical

data for energy consumption around the world. For this purpose, it is convenient to

introduce the cumulative distribution function

C(ε) =
∫

∞

ε
P (ε′) dε′. (29)

Operationally, C(ε) is the number of agents with the energy consumption above ε divided

by the total number of agents in the system. If P (ε) is an exponential function, then

C(ε) is also exponential.

4.3. Empirical data analysis

We downloaded empirical data from the World Resources Institute (WRI) website [28].

The data on energy consumption is listed under the topic “Energy and Resources”. We

downloaded the variable “Total energy consumption” [29], which contains the annual

energy consumption for various countries for the years 1990, 2000, and 2005 (only these

years are available). Population data is listed under the topic “Population, Health and

Human Well-being”. We downloaded the variable “Total population, both sexes” [30],

which contains the total population of various countries for the same years. From these

two data files, we selected the countries for which both energy and population data are

available. Our final data files have 132 countries for 1990 and 135 countries for 2000

and 2005. Then we divided the annual energy consumption in a given country by the

population of this country to obtain the average energy consumption per capita ε. The

values of ε are listed in table 2 for some countries. A spreadsheet with our complete

dataset is available for download as the supplementary online material to this article.

††To make it clear, this effective T is not the temperature as it is known in physics.
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Country Label Energy use in kW GDP/capita in k$

1990 2000 2005 1990 2000 2005

Australia AUS 6.9 7.7 7.9 18.9 20.9 36.3

Bahrain BHR 13.0 12.8 14.9 8.6 12.3 22.1

Brazil BRA 1.2 1.4 1.5 3.1 3.7 4.7

Canada CAN 10.0 10.9 11.3 21.0 23.6 35.1

China CHN 1.0 1.2 1.7 0.3 0.9 1.7

Cuba CUB 2.1 1.4 1.2

France FRA 5.3 5.8 6.0 21.9 22.4 35.0

Germany DEU 6.0 5.6 5.6 21.6 23.1 33.7

Iceland ISL 11.3 15.3 16.3 24.5 30.9 54.8

India IND 0.5 0.6 0.6 0.4 0.4 0.7

Iran IRN 1.6 2.4 3.1 2.0 1.5 2.8

Israel ISR 3.6 4.2 3.9 11.6 19.9 19.4

Japan JPN 4.8 5.5 5.5 24.4 36.7 35.6

Kenya KEN 0.7 0.6 0.7 0.4 0.4 0.5

Kuwait KWT 5.3 12.2 13.9 8.6 16.9 29.9

Mexico MEX 2.0 2.0 2.3 3.1 5.8 7.4

Netherlands Antilles ANT 10.4 10.2 11.9

Russia RUS 7.9 5.6 6.0 3.5 1.8 5.3

Arab Emirates ARE 16.1 14.7 15.2 18.0 21.7 31.6

United Kingdom GBR 4.9 5.3 5.2 17.3 24.5 37.0

United States USA 10.0 10.8 10.4 22.5 34.3 41.3

Qatar QAT 18.1 25.6 26.5 15.8 28.8 53.3

World average 2.2 2.2 2.3 4.2 5.2 7.0

Table 2. Energy consumption per capita for the countries labeled in figure 5, figure 6,

and figure 7. The units are converted from kilo tons of oil equivalent per year to kW

(1 toe = 41.85× 109 Joules). The last three columns show GDP per capita from [34].

Then we proceeded to construct the cumulative probability distribution for ε. First,

we sorted the countries in the ascending order of their energy consumption per capita

εn, so that n = 1 corresponds to the country with the lowest consumption, and n = L

to the maximal consumption, where L is the total number of countries. We denoted the

population of a country n as Nn. Then, the cumulative probability for a given εn is

Ce(εn) =

∑L
k=nNk

∑L
k=1Nk

. (30)

Effectively, this construction assigns the same energy consumption εn to all Nn residents

of the country n. Of course, this is a very crude approximation, but it is the best we can

do in the absence of more detailed data. The empirically constructed function Ce(εn)

is shown in figure 5 by different colors for the years 1990, 2000, and 2005. Table 2 and

figure 5 illustrate the great variation and inequality of energy consumption per capita
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Figure 5. Cumulative distribution functions of energy consumption per capita around

the world for 1990, 2000, and 2005. The solid curve is the exponential function.

around the world. Let us focus on the data for 2005. In USA, ε is about 5 times greater

than the global average; in China, ε is close to the global average; and, in India, ε is

about 1/4 of the global average.

By construction, Ce(εn) exhibits discontinuities at each εn because of the

approximation used in our procedure. Given the relatively small number of data points

(L = 135) and discontinuities of the plot, it is not practical to do a quantitative fit

of the data. Nevertheless, the empirically constructed function Ce(ε) can be compared

with the theoretical function Ct(ε) = exp(−ε/T ), which is shown by the solid line in

figure 5. Here the temperature T = 2.2 kW is the average global energy consumption

per capita, obtained by dividing the total energy consumption of all countries by their

total population. This value is indicated by the arrow in figure 5. (For comparison,

physiological energy consumption at rest by a female of the weight 53 kg is 63 W

[31].) The exponential function does not fit the data perfectly, but it captures the main

features reasonably well, given the crudeness of the data. The agreement is remarkable,

given that the solid line is not a fit, but a plot of a function with one parameter T fixed

by the global average.

In order to make an additional visual comparison between the theory and the data,

the functions Ce(εn) and Ct(ε) are plotted in figure 6 in log-linear scale and in figure 7

in log-log scale. In figure 6, we see that the empirical data points oscillate around the

theoretical exponential function shown by the straight line. The data jumps for high

ε are unnaturally magnified in the logarithmic scale. Figure 7 demonstrates that the



22

0 5 10 15 20 25

10
−4

10
−3

10
−2

10
−1

10
0

Kilowatts/Person

F
ra

ct
io

n 
of

 th
e 

w
or

ld
 p

op
ul

at
io

n

World distribution of energy consumption

GBR

USA

CAN

ANT
ISL

LUX BHR

QAT

GER

BRA

FRA
USA

LUX
KWT

BHR
ARE

ISL

QAT

IND

CHN

CAN

KWT

ISL

BHR
ARE

QAT

ANT

 

 

1990

2000

2005

Exponential
function

Average 
2.2 kW

Figure 6. The same data as in figure 5, but plotted in log-linear scale.

empirical data points do not fall on a straight line in the log-log scale, so the energy

consumption per capita is not described by a power law. Indeed, energy production

and consumption are physically limited and have the characteristic average scale T , so

a scale-free power-law distribution would not be expected here.

We have also constructed the plots for CO2 emission per capita using the data

from WRI [28]. They look essentially the same as the plots for energy consumption per

capita, in agreement with findings by other authors [32], because most of energy in the

world is currently generated from fossil fuel.

4.4. The effect of globalization on the inequality of energy consumption

Figure 5, figure 6, and figure 7 give different visual representations of C(ε), but have

certain shortcomings. Figure 5 emphasizes the low end of the data, whereas figure 6

and figure 7 emphasize the high end. All figures suffer from discontinuities.

A smoother visualization can be achieved in the Lorenz plot for energy consumption

per capita. As in (25), the empirical Lorenz curve is constructed parametrically

x(εn) =

∑n
k=1Nk

∑L
k=1Nk

, y(εn) =

∑n
k=1 εkNk

∑L
k=1 εkNk

. (31)

The horizontal coordinate x(εn) gives the fraction of global population with energy

consumption per capita below ε, and y(εn) gives the total energy consumption of this

population as a fraction of the global consumption. When n runs from 1 to L, we obtain

a set of points in the (x, y) plane representing the Lorenz plot.
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Figure 7. The same data as in figure 5, but plotted in log-log scale.

The empirically constructed Lorenz plots for 1990, 2000, and 2005 are shown in

figure 8 using different colors. By construction, the Lorenz plots are continuous without

jumps, although the slope (the derivative) of the y(x) curve is discontinuous. Another

advantage of the Lorenz plot is that it emphasizes the data where most of the population

is, i.e., the range from the bottom 5% to the top 95% of the population sorted according

to their energy consumption per capita.

The black solid line shows the theoretical Lorenz curve y = x + (1 − x) ln(1 − x)

for the exponential distribution. We observe that, in the first approximation, the

theoretical curve captures the data reasonably well, especially given that the curve

has no fitting parameters at all. Upon a closer examination, we notice a systematic

historical evolution of the empirical curves. From 1990 to 2005, the data points moved

closer to the diagonal, which indicates that global inequality of energy consumption

decreased. This is confirmed by the decrease of the calculated Gini coefficient G, which

is listed in figure 8.

On the Lorenz plot for 1990, we notice a kink or a knee indicated by the arrow, where

the slope of the curve changes appreciably. This point represents the boundary between

developed and developing countries. Indeed, below this point we find Mexico, Brazil,

China, and India, whereas above this point we find Britain, France, Australia, Russia,

and USA. The conclusion is that the difference between developed and developing

countries lies in the degree of energy consumption and utilization. This criterion provides

a physical measure for such a distinction, as opposed to more ephemeral monetary

measures, such as dollar income per capita.

Comparing the Lorenz plots for 2000 and 2005 with the plot for 1990, we observe
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Figure 8. Lorenz plots of energy consumption per capita around the world in 1990,

2000, and 2005, compared with the Lorenz curve for the exponential distribution.

that the kink in the plots is progressively smoothed out. It means that the gap in energy

consumption per capita between developed and developing countries is shrinking. We

attribute this result to rapid globalization of the world economy in the last 20 years.

Nevertheless, the distribution of energy consumption per capita around the world still

remains highly unequal. We observe in figure 8 that the Lorenz plot has moved closer

to the solid curve representing the exponential distribution. Based on the general

arguments about partitioning of a limited resource, we expect that the result of a well-

mixed globalized world economy would not be an equal energy consumption, but the

exponential distribution. Thus, it is not likely that the energy consumption inequality

will be eliminated in foreseeable future.

It is generally known that energy consumption per capita and GDP per capita

are positively correlated, and energy consumption is the physical basis for economic

prosperity [32]. Brown et al. [33] found a power-law relation ε ∝ (GDP/capita)0.76

between these two variables by analyzing the data for different countries around the

world (see figure 3A in [33]). The last three columns in Table 2 show the data for

GDP per capita [34]. Although this variable is generally correlated with the energy

consumption per capita, the monetary and the physical measures are not always well

aligned. The movement of sustainable economics [35] criticized GDP as a useful measure

of economic prosperity.
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5. Conclusions

In this paper, we study probability distributions of money, income, and energy

consumption per capita for ensembles of economic agents. Following the principle of

entropy maximization for partitioning of a limited resource among many agents, we

find exponential distributions for the investigated variables. Using an analogy with

thermodynamics, we discuss trade deficit and immigration between two countries with

different money temperatures. Considering a cycle similar to a thermal engine, we

discuss how a monetary profit can be extracted in the presence of non-equilibrium due

a temperature difference.

Then we study a Fokker-Planck equation for income diffusion with additive and

multiplicative components. The resulting probability distribution of income interpolates

between the exponential function (Boltzmann-Gibbs) at the low end and the power

law (Pareto) at the high end. This function agrees well with the empirical income

distribution data in USA obtained from the Internal Revenue Service. While the

exponential distribution in the lower class remains stable in time, the income fraction

f going to the upper tail expands dramatically during speculative bubbles and shrinks

when the bubbles burst. Overall, income inequality in USA has increased significantly

from 1983 to 2007, so that now f exceeds 20% of the total income in the system. We

also discuss reasons why the Pareto exponent tends to have the value about α = 2 in

the steady state in the absence of bubbles.

Finally, we analyze the probability distribution of energy consumption per capita

around the world using the data from the World Resources Institute. We find that

the distribution is reasonably described by the exponential function with the average

global consumption as the effective temperature. A closer examination finds a gap in

energy consumption between developed and developing countries, which tends to shrink

as time progresses. We attribute this effect to globalization of the world economy. The

inequality of energy consumption decreased from 1990 to 2005, while the corresponding

Lorenz plot moved closer to the exponential distribution.

In conclusion, we observe that statistical problems of different nature have common

mathematical description and exhibit similar and universal patterns of inequality.

Thus, statistical approach gives an insight into the persistent and ubiquitous nature

of inequality in the world around us. The approach presented here can be also applied

to other statistical problems.
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